
Histology Image Artifact Restoration
with Lightweight Transformer Based Diffusion

Model

Chong Wang1, Zhenqi He2, Junjun He3, Jin Ye3, and Yiqing Shen4(B)

1 School of Biological Science and Medical Engineering, BeiHang University, Beijing, China
2 Department of Mathematics, Faculty of Science, The University of Hong Kong, Kowloon,

Hong Kong SAR
3 Shanghai AI Laboratory, Shanghai, China

4 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
yshen92@jhu.edu

Abstract. Histology whole slide images (WSIs) are extensively used in tumor
diagnosis and treatment planning. However, the presence of artifacts resulting
from improper operations duringWSI collection can impede bothmanual and deep
learning-based analysis. To bridge this gap, we propose an innovative denoising
diffusion model tailored for inpainting artifact-laden regions in histology WSIs.
Our method focuses on preserving the intricate morphological structures, which
are essential for accurate diagnosis. To ensure the preservation of morpholog-
ical structures during regional artifact inpainting, we have developed a novel
lightweight Transformer-based denoising network, that can capture the correla-
tions between the regional artifact with the global morphological structures. In
comparison to existing generative adversarial network (GAN) based solutions,
our method minimizes changes in morphology while maximizing preservation
of the stain style during the restoration of the artifact. By providing a more reli-
able and accurate restoration of artifact-affected areas, our model facilitates better
analysis and interpretation of histological images, thereby potentially improving
the accuracy of tumor diagnosis and treatment decisions. The code is available at
https://github.com/zhenqi-he/artifact-restoration.
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1 Introduction

The analysis of histology whole slide images (WSIs) is crucial for various medical
tasks, such as tumor diagnosis, nuclei localization, and treatment planning. However,
the integrity of WSIs in histological analyses is frequently jeopardized by a multitude
of variables, among which inaccuracies arising during the scanning or collection phases
represent a predominant factor [12]. Such procedural deviations can induce significant
morphological alterations in tissue structures, which are manifest as artifacts, including
but not limited to tissue folds and bubbles [15]. The presence of such artifacts sub-
stantially complicates the accurate evaluation and interpretation of histological samples.
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This complication elevates the likelihood of misdiagnosis among medical professionals
and compromises the performance efficacy of Computer-Aided Diagnosis (CAD) sys-
tems [17]. Particularly concerning is the detrimental impact on deep learning models,
which are increasingly deployed in histological analyses. These computational models
are intrinsically vulnerable to the distorting influence of artifacts, thereby engendering
potential misclassification or mislabeling of critical tissue structures. This, in turn, exac-
erbates the risk factors associated with both false positive and false negative diagnoses
[19].

In clinical applications, although it is technically possible to rectify the issue of
artifacts through re-scanning or re-preparation of the affected tissue slides, such a course
of action imposes significant logistical and financial burdens, often requiring multiple
iterations to achieve a satisfactory WSI [4]. As for CAD, the strategy of identifying
and excluding artifact-laden regions does offer a solution; however, this tactic inevitably
results in a forfeiture of valuable contextual information, thereby undermining the overall
reliability of the diagnostic model [2]. Existing techniques for mitigating various types
of artifacts, including but not limited to folds [11], ink markings [1], and out-of-focus
[8] zones, have been introduced; yet, these methods remain inadequate in restoring
occluded regions. More recently, approaches leveraging generative networks have been
proposed for the remediation of artifact-afflicted areas [10]. These methods, however,
suffer from inherent challenges related to mode collapse, complicating their training
phases. Additionally, the propensity of generative-based approaches to induce alterations
in structure or coloration detracts from the precision of the restored regions.

To ameliorate these challenges, we propose a novel Denoising Diffusion Probabilis-
tic Model (DDPM) [7] with lightweight transformer as the denoising network, specif-
ically engineered for the inpainting of artifact-laden regions within histological WSIs.
Diverging significantly from the generative-based paradigms, the proposed methodol-
ogy obviates the need for artifact-laden images during training, substantially facilitating
the data acquisition process and streamlining the training pipeline. The key contribu-
tions of this study can be summarized as follows: (1) The introduction of an innovative,
lightweight Transformer-based denoising network, purposed for the nuanced capturing
of correlations between regional artifacts and global morphological structures. (2) The
implementation of a conditional framework during the restoration process, selectively
targeting artifact regions while scrupulously preserving the morphological and staining
features of artifact-free zones.

2 Related Work

Artifact inHistology. The challenge ofmitigating artifacts inmedical image analysis is
both enduring and complex, particularly for the field of histopathology. The presence of
artifacts can significantly compromise the efficacy of computer-aided diagnosis systems,
often leading deep learning algorithms to misclassify artifact-ridden areas as tumors.
Artifacts are typically spawned by a variety of factors, such as equipment specifications,
data acquisition protocols, and environmental conditions [12]. These intrusions not only
degrade the overall quality ofWSIs but also introduce errors in subsequent computational
analyses. To address this, current practices often involve manually omitting images
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containing artifacts during the curation of histopathological datasets [6]. While this
ensures data reliability, this procedure also poses a dilemma, namely the exclusion of
these images leads to a loss of potentially valuable information, thereby generating a
problem of dataset incompleteness.

Generative Model for Artifact Restoration. Generative models have shown their
promise in ameliorating histological artifacts [16]. For example, CycleGAN has been
adapted to tackle this specific problem [20]. However, existing generative techniques
are not without their limitations. One significant drawback is the inadvertent alteration
of staining styles, resulting in unnatural color variations across the histological images.
Although recent advancements havemitigated some of these issues, a case in point being
a refinedCycleGANmodelAR-CycleGANthat employs artifact andpseudo-color cycles
[10], GAN-based approaches still face challenges. In particular, they can unintentionally
introduce morphological changes in regions that are already artifact-free, putting at risk
the integrity of critical tissue structure information.

3 Methods

The proposed method for denoising and restoring artifacts in medical images consists
of two stages: training on artifact-free images and artifact restoration (Algorithm 1).
During the training stage, the distribution of artifact-free regions is learned through a
denoising diffusionmodel. In the inference stage, artifact regions are specifically targeted
for restoration by substituting them with Gaussian noise and leveraging the contextual
regions of artifact-free areas for recovery.

3.1 Diffusion Training Stage

In the training phase, local tissue structures are learned from artifact-free histological
images for subsequent artifact restoration. Following the standard formulation of DDPM
[7], it comprises a forward process and a reverse process. In the forward process, noises
are gradually added until the structure of the image is fully destroyed, and the image at
each timestep t can be determined by the states at the previous timestep t − 1 through
a Gaussian perturbation q(xt |xt−1) = N

(
xt;√

1 − βtxt−1,βtI
)
parameterized by βt .

On the contrary, during the reverse phase, a denoising neural network is trained to
approximate the conditional distribution p(xt−1|xt), effectively reversing the effects of
the noise-inducing operation q(xt |xt−1). The objective is to iteratively reconstruct the
original data distribution from an initial condition of white noise (xT ). Each reverse step,
guided by the learned denoising function, refines the generated sample by removing
noise and enhancing the essential features of the underlying data structure. Through this
iterative process, the network essentially reverses the diffusion procedure, leading to
a high-fidelity reconstruction of the original image or data point. Exemplary samples
generated are demonstrated in Fig. 1.

Denoising diffusion methods predicated on UNet architecture are typically char-
acterized by a substantial number of model parameters, resulting in protracted infer-
ence times. Inspired by SegFormer [18], to optimize efficiency for local deployment, a
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Fig. 1. The generated histological images by the diffusion model (left) and real-world histology
data (right).

denoising network leveraging a lightweight Transformer architecture was engineered.
Notably, relative to convolutional networks, the Transformer-based architecture demon-
strates superior efficacy in capturing the intricate relationships between regional artifacts
and global morphological structures (Fig. 2).

3.2 Artifact Restoration

In the artifact restoration stage, we utilize the diffusion model to restore the artifact
region from an inpainting perspective (Fig. 3). Firstly, a threshold-based segmentation
method is first used to detect the artifact regions in the input image x0. We then use
this information to condition the denoising process only to the artifact regions, while
maintaining the artifact-free regions to preserve the morphological structure and stain
style. Formally, we write the artifact region as x0 � m and the artifact-free region as
x0 � (1 − m) , wherem is a boolean mask generated in the threshold method, and � is
the pixel-wise multiplication operator. It follows that the selective denoising process to
inpaint the artifact region is formulated as xint = xsamplet � (1 − m) + xoutt+1 � m, where

xsamplet follows the Gaussian perturbation in the forward process, and xoutt+1 is the output
from the denoising network in the previous reverse step. We employ the Denoising
Diffusion Implicit Model (DDIM) [13] to accelerate the restoration process.
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Fig. 2. The proposed lightweight Transformer-based denoising network. FFN, Feedforward
Network; MLP, Multilayer Perceptron.
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4 Experiments

4.1 Datasets and Settings

The efficacy of the proposed framework for artifact restoration has been rigorously evalu-
ated in the context of both artifact removal and downstream tissue structure classification
tasks. For the purpose of ensuring the reliability of the findings, the publicly accessible
dataset, NCT-CRC-HE-100K [9], was employed for the training phase, while validation
was conducted using the CRC-VAL-HE-7K dataset. We regard the images from the
original dataset as clean and proceed to artificially synthesize Artifact images. Owing
to the scarcity of comparable studies and open-source codes in the existing literature,
CycleGAN [20] was chosen as the benchmark for comparison, and its performance was
also evaluated on downstream classification tasks.

4.2 Implementation Details

We implemented the proposed method along with the associated downstream classifica-
tion tasks using Python 3.8.10 and the PyTorch 1.10.0 library. To accelerate computations
and facilitate parallelism, all experiments were run on a dual-GPU setup, specifically
using two NVIDIA RTX A4000 graphics cards, each outfitted with 16 GiB of memory.
Within the context of our denoising diffusion model, we adhered to a specific set of
hyperparameters to optimize performance. We employed the Adam optimizer with a
learning rate of the 1 × 104, and designated a total of 250 time steps for the artifact
restoration for computational efficiency.

4.3 Evaluation of Artifact Restoration

In the evaluation of artifact restoration, one crucial aspect that must not be overlooked
in the realm of medical imaging is the preservation of tissue structure and staining
variations within artifact-free regions. As evidenced by the Fig. 4, the proposed method
exhibits significant efficacy in retaining the structural integrity of the image. These
results suggest that by strategically utilizing the distribution of artifact-free regions as
a guide for the restoration process within artifact-afflicted areas, it becomes feasible to
accurately replicate the tissue structure and staining characteristics inherent to artifact-
free regions. This in turn culminates in a more authentic restoration of tissue images,
thereby enhancing their clinical relevance.

4.4 Comparisons of Model Complexity

A noteworthy feature of our proposed method lies in its efficiency in terms of parameter
count. Relative to other extantmodels, our approach operateswith a substantially reduced
number of parameters (Table 1). Specifically, when contrasted with UNet-based denois-
ing models [7], our model manifests a 91.1% reduction in the number of parameters,
diminishing from 1.081 × 108 to 9.62 × 106. This reduction in parameter complexity
translates to accelerated inference times, which have been curtailed from 112.37 s to a
mere 24.64 s. Such an improvement substantially augments the suitability of our model
for real-world clinical deployment.
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Fig. 3. The proposed artifact restoration pipeline.

Fig. 4. Illustration of histology images with artifact, where the artifact region is highlighted by
green rectangles ( ); and restored images by our proposed denoising diffusion model.

4.5 Evaluation on Downstream Classification Tasks

To evaluate the effectiveness of the proposed artifact restoration framework, an assess-
ment was conducted on downstream tissue structure classification tasks. Two baselines,
denoted as ‘Clean’ and ‘Artifacts’, served as comparative standards. ‘Clean’ represents
artifact-free images, while ‘Artifacts’ encapsulates images afflicted by artifacts. These
baselines are critical for contextualizing the improvements furnished by our model. In
Table 2, a comprehensive assessment againstmultiple classification benchmarks revealed
that our method outperforms the CycleGAN approach across all metrics. Specifically, it
was observed that the presence of artifacts led to a significant degradation in classification
accuracy,with an average decline of 8.82%.However, the artifact removal augmented the
classification accuracy of afflicted images. For instance, on the ResNet50 architecture,
compared to the ‘Artifacts’ baseline, our method enhanced the accuracy by 7.13%, while
CycleGAN improved it by 2.98%. Compared to the CycleGAN benchmark, our app-
roach exhibited superior accuracy with an improvement of 3.54%, indicating enhanced
capabilities for artifact restoration.

Table 1. Model complexity comparison in terms of the number of parameters and averaged
inference time.

Methods #Params (×106) Time (s)

CycleGAN 28.28 1.065

DDPM (UNet) 108.41 112.37

Ours 9.62 24.64
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Table 2. The effectiveness of the proposed artifact restoration framework on the downstream task-
tissue classification task. We report the classification accuracy on the test set (%) with different
network architectures of ResNet [5], RexNet [3], and EfficientNet [14].

Method ResNet18 ResNet50 RexNet100 EfficientNetB0

Clean 95.529 94.833 95.487 95.808

Artifacts 80.302 85.012 90.446 90.626

CycleGAN 86.326 87.994 90.776 91.811

Ours 91.676 92.144 93.786 93.449

5 Conclusions

One salient findingwas themarked degradation in classification accuracy in the presence
of image artifacts—a challenge our method adeptly mitigates. Beyond merely enhanc-
ing accuracy rates, our framework sets itself apart through its exceptional efficiency in
utilizing parameters. This efficiency not only showcases the robustness of our approach
but also its practical viability in clinical environments. In such settings, the dual require-
ments of high accuracy and computational economy are critical, and our framework
meets these demands admirably. Moreover, it is important to acknowledge that while
our model does incur longer inference times, especially when compared to alternatives
like CycleGAN, this outcome is a direct result of its intricate sequential diffusion steps.
These steps, though time-consuming, are integral to the model’s ability to accurately
process and improve upon the input images. Future work will explore the application
of distillation techniques to reduce the number of inference steps, thereby aiming to
optimize the duration of the inference phase.
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